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Comparative Dielectric Response in CaTiO3 and CaAl1/2Nb1/2O3 from First Principles
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CaTiO3 (CT) and CaAl1/2Nb1/2O3 (CAN) have similar structures but very different dielectric
properties. For CT at room temperature, the relative permittivity κ ≈ 170 and the temperature
coefficient of resonance frequency τf ≈ +900 ×10−6 K−1, but for CAN, κ ≈ 27; τf ≈ −88 ×10−6

K−1. We use first-principles density functional theory calculations to investigate the origin of
the divergent behaviors. We find important differences between the two systems in both the
frequencies and the eigenvectors of the low-frequency polar phonons. In CT, the frequencies are
lower and the perovskite B site cations move against the surrounding oxygen octahedra; whereas
in CAN, the frequencies are higher and the B site cations move with the oxygen octahedra.
These two factors are equally important in explaining the differences in κ. We introduce and
solve a decoupled quantum oscillator model for the temperature-dependent permittivity. This
model predicts a large positive τf for CT and a small τf for CAN, in qualitative agreement
with experiment. We relate the different dielectric behaviors to differences in the electronic
structures.

PACS numbers:

I. INTRODUCTION

Dielectric materials for microwave applications must
have high permittivity, low loss, and temperature sta-
bility. Uncovering the relationship between chemistry,
structure, and dielectric properties is of the utmost im-
portance for the rational design of new dielectric materi-
als.

Some empirical structure-property relationships have
been found for permittivity and temperature coefficient.
Shannon[1] has found that the permittivities of a wide
variety of oxides can be fit assuming additive atomic po-
larizabilities. These rules, however, have only been shown
to work well for materials with relative permittivities
κ < 15[1], which excludes the high-permittivity materials
of interest for microwave applications. Furthermore, this
approach involves some unphysical assumptions, such as
using the microscopic Clausius-Mossotti relationship for
structures where not all ions sit on positions of cubic
symmetry.

The temperature coefficient of resonance frequency τf
of a resonator is given by

τf ≡
1
f

∂f

∂T
= −α− 1

2
1
κ

∂κ

∂T
= −α− τκ

2
, (I.1)

where f is the resonant frequency, α the linear coefficient
of thermal expansion, and τκ the temperature coefficient
of permittivity. Much recent work has focused on the
empirical correlation of τf (τκ) with the tolerance factor
in perovskite-related materials[2–6]. The tolerance factor
t is given by

t =
RA +RO√
2(RB +RO)

, (I.2)

where RA, RB , and RO are the ionic radii of the per-
ovskite A site cation, the perovskite B site cation, and
oxygen. It has been found that smaller t correlates with
more negative τf in a variety of systems. Here too, the re-
lationship between tolerance factor and τf is not univer-
sal. For example, CaZrO3 has a smaller t but a more pos-
itive τf than SrZrO3, although the structures differ only
by isovalent substitution and are related to the undis-
torted perovskite structure by the same category of oxy-
gen octahedral tilting[4]. Present empirical knowledge of
structure-property relationships is thus not sufficient to
reliably predict the properties of new dielectric materials.

The contrasting dielectric properties of the closely
related materials CaTiO3 (CT) and CaAl1/2Nb1/2O3

(CAN) highlight the need for more fundamental stud-
ies of structure- property relationships. CT is a simple
perovskite; CAN is a doubled perovskite with a rocksalt-
like 1:1 ordering of Al and Nb on the B-site sublat-
tice. CT and CAN have nearly identical lattice param-
eters, tolerance factors, and octahedral tilting patterns
and magnitudes[7]. Experimentally, however, CT has
κ ≈ 170[4, 8, 9] and τf ≈ +900 ×10−6 K−1 at room
temperature[4, 10], whereas CAN has κ ≈ 27 and τf ≈
-88 ×10−6 K−1[11, 12]. Furthermore, the CT-CAN sys-
tem is of experimental interest because it forms a solid
solution series across the entire composition range and
thus contains a single-phase material with τf = 0, which
is potentially a useful microwave dielectric material.

In order to understand the structure-property relation-
ships that lead the simple perovskite CT to have higher
permittivity and τf more positive and much larger in
magnitude than the double perovskite CAN, we turn to
first principles calculations. In a previous work[13], we
used first-principles methods to successfully compute the
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permittivity of CaTiO3 via computation of its phonon
properties. In this work, we apply the same method to
CaAl1/2Nb1/2O3. Then we take a step toward an under-
standing of the microscopic origin of τf by computing the
intramode phonon anharmonicities to lowest order and
introducing a decoupled anharmonic quantum oscillator
model. We find that the same phonon characteristics
that give CaTiO3 a higher permittivity are responsible
for its more positive τf .

II. PERMITTIVITY

By definition, the static relative permittivity tensor κ↔

of a solid is given by

καβ = δαβ +
1
ε0

∂Pα
∂Eβ

, (II.1)

where P is the polarization, E the applied electric field,
δαβ the Kronecker delta function, and ε0 the permittivity
of free space.

Dispersion theory[14] shows that the permittivity ten-
sor for a crystal within the harmonic approximation is
given equivalently by[13, 15]:

καβ = (κ∞)αβ +
∑
µ

Z?µαZ?µβ
V ε0m0ω2

µ

, (II.2)

where κ↔∞ is the electronic dielectric tensor, µ labels the
zone-center (q = 0) infrared-active normal modes of the
system, ωµ their (angular) frequencies, Z?µα their effec-
tive charges in Cartesian direction α, and V the volume
per unit cell. The mode effective charge in the α direction
for a given mode µ is defined as

(Z
?

µ)α ≡
∑
iγ

Z?iαγ(m0/mi)1/2(aµ)iγ , (II.3)

where Z
↔
?
i is the Born effective charge tensor for ion i, mi

its mass, (aµ)iγ the component of the normalized dynam-
ical matrix eigenvector for mode µ involving ion i in the
γ direction, and m0 an arbitrary mass, which is cancelled
by the denominator of (II.2). We use m0 = 1 amu in this
work.

We define an “ideal ceramic” as one whose physical
properties are simply the average of the constituent ma-
terial over all orientations. The dielectric constant of an
ideal ceramic is

κ =
1
3
Tr{κ↔} (II.4)

The dispersion formula for an ideal ceramic becomes

κ = κ∞ +
∑
µ

1
3

Z?
2

µ

V ε0m0ω2
µ

, (II.5)

where Z?
2

µ =
∑
α Z

?2

µα.
In order to investigate the temperature dependence of

κ and thus τf , it is necessary to go beyond the harmonic
approximation. We begin with a proper quantum statis-
tical mechanics treatment. At a given temperature, the
lattice dynamics problem is a coupled anharmonic oscil-
lator problem whose parameters are determined by an
expansion of the total energy in the normal mode coor-
dinates of the equilibrium cell. The equilibrium cell at a
given temperature, in turn, is determined by the anhar-
monic lattice dynamics in a self-consistent manner.

Assume that one can determine the complete set of
phonon eigenstates n and eigenenergies En for the case
of a weak electric field along direction β. The quantum
mechanical density operator at thermal equilibrium is di-
agonal with element ρnn = exp(−En/kT )/Z, where Z is
the partition function. The expectation value of the po-
larization along direction α is

< Pα >= Tr{ρPα} =
∑
n

exp(−En/kT ) < Pα >n /Z,

(II.6)
where < Pα >n is the expectation value of Pα for eigen-
state n. If the material is nonpolar when the ions are
in their equilibrium positions, as is the case for CT and
CAN, then καβ is given by

καβ = δαβ +
1
ε0

(lim|E|→0 < Pα >E=Eβ̂). (II.7)

In Section V, we make further approximations in order to
obtain a solvable model for κ as a function of temperature
and thus τf .

III. FIRST-PRINCIPLES CALCULATIONS

All calculations are performed using VASP (the Vi-
enna ab initio simulation package[16–19]). VASP is a
code for plane-wave pseudopotential density functional
theory calculations. We used ultrasoft Vanderbilt-type
pseudopotentials[20] as supplied by G. Kresse and J.
Hafner[21]. The total number of valence electrons used
was 8 for Ca, 10 for Ti, 3 for Al, 11 for Nb, and 6
for oxygen. All of our calculations were done using the
VASP high precision option, i.e. a plane-wave energy
cutoff of 494.6 eV. We used the local density approxima-
tion (LDA) for the exchange-correlation energy. Brillouin
zone integration was obtained by calculating Kohn-Sham
wavefunctions for a set of 128 k points in the Brillouin
zone, positioned so as to be equivalent to an 8 × 8 × 8
Monkhorst-Pack grid for a primitive perovskite cell.
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IV. RESULTS

A Structure

Generally, LDA calculations result in a unit cell that is
too small. On the other hand, physical properties calcu-
lated under the LDA have generally been found to agree
better with experiment if the cell parameters are fixed
at the experimental ones[22]. Since we are interested in
dielectric properties, we use the experimental lattice pa-
rameters for CT and CAN here. For CT, we use the
weighted average of the four structure refinements tab-
ulated in Ref. [23]. For CAN, we use the parameters
measured by Vanderah et al.[12, 24]. In each case, we
started with the ions in their experimental positions and
then relaxed the ions within the LDA until a total energy
convergence of better than 10−6 eV per formula unit was
obtained. The results are shown in Table I. We treat
CAN as fully ordered; experimentally, occupation factors
of 0.93 have been obtained[7].

TABLE I: Comparative relaxed LDA structures for
CaTiO3 and CaAl1/2Nb1/2O3. Lattice parameters are
from experiment. Space group: CT: Pbnm (#62, setting
cab); CAN: P121/n1 (#14, unique axis b, cell choice 2).
a, b, c in Å.

CT CAN CT CAN

a 5.3804 5.3773 Nb
b 5.4422 5.4153 x 1/2
c 7.6417 7.6262 y 0
β 90◦ 89.97◦ z 0

Ca O(1)
x 0.9903 0.9913 x 0.0807 0.0780
y 0.0443 0.0406 y 0.4783 0.4802
z 1/4 0.2482 z 1/4 0.2437
Ti O(2)
x 0 x 0.7093 0.7173
y 1/2 y 0.2904 0.2947
z 0 z 0.0427 0.0416
Al O(3)
x 0 x (0.7907) 0.7961
y 1/2 y (0.7904) 0.7831
z 0 z (0.0427) 0.0405

The theoretical structures for CAN and CT are very
similar. Both have the a−a−c+ octahedral tilting pattern
and all positional parameters agree to within 0.01 lattice
parameters (see Figure 1).

B Born effective charges

As described in[13], we used the King-Smith and
Vanderbilt[25] method to calculate the polarizations of
appropriately perturbed cells and from this, the Born ef-
fective charge tensors of the ions. Full details and results
for CT are given in [13]. In Table II, we give the principal

CT CAN

FIG. 1: Comparison of relaxed LDA octahedral tilting
patterns in CT and CAN (to scale).

components of the Born effective charges, obtained by di-
agonalizing the tensors for each ion in CAN, and compare
the results with those for CT. The nominal ionic charges
of Ca, Ti, Al, Nb, and O are, respectively, 2, 4, 3, 5 and
−2. The dynamical effective charges are generally larger
in magnitude than the nominal charges, especially for
the B site cations and for O in the direction of the B-O
bonds. The anomalies are larger in CT than in CAN.
The effective Nb charge in CAN is significantly lower
than that for Nb in simple ANbO3 perovskites where it is
about +9[26, 27]. A similar reduction of the Nb effective
charge has been observed in other complex perovskites
containing Nb[28].

TABLE II: Principal components of Born effective charge
tensors of for CT and CAN. (in |e|)

CT CAN CT CAN
Z?Ca,1 2.59 2.62 Z?01,1 –5.37 –3.81
Z?Ca,2 2.38 2.36* Z?01,2 –2.05 –1.98
Z?Ca,3 2.27 2.36* Z?01,3 –1.91 –1.79
Z?Ti/Al,1 7.06 4.06 Z?02,1 –5.38 –3.87

Z?Ti/Al,2 6.90* 3.98* Z?02,2 –2.02 –1.83*

Z?Ti/Al,3 6.90* 3.98* Z?02,3 –1.91 –1.83*

Z?Ti/Nb,1 (7.06) 6.26 Z?03,1 (–5.38) –3.79

Z?Ti/Nb,2 (6.90*) 6.23* Z?03,2 (–2.02) –1.89*

Z?Ti/Nb,3 (6.90) 6.23* Z?03,3 (–1.91) –1.89*

*Modulus of

complex eigenvalue

C Electronic dielectric tensor

To calculate the electronic contribution to the dielec-
tric tensors, we used a modification of the method of
Bernardini, Fiorentini, and Vanderbilt[29, 30]. Full de-
tails are given in [13]. In contrast to our previous work,
where we used the energy of semicore states to determine
the local potential and thus the local macroscopic field,
here we used the VASP option which determines the po-
tential at the ionic centers. We weighted each ion equally;
the difference in potentials between pairs of like ions at
a given separation depended on the species and varied
as much as ±10%; thus the uncertainty in the electronic
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dielectric constant is several percent.
The results for the on-diagonal electronic dielectric

tensor components for CT and CAN are shown in Ta-
ble III, along with the value κ∞ = 1

3Tr{κ
↔} expected for

an ideal ceramic. κ∞ is about 20% larger in CT than
in CAN. Unlike CT, CAN has monoclinic symmetry and
thus a nonzero (κ∞)xz. Because (κ∞)xz does not affect
Tr{κ↔}, we did not calculate it here.

TABLE III: Diagonal components of first-principles elec-
tronic dielectric tensors for CT and CAN.

CT CAN
(κ∞)xx 6.03 4.87
(κ∞)yy 6.02 5.02
(κ∞)zz 6.19 4.89
κ∞ 6.08 4.93

D Phonons and Permittivity

After calculating the residual Hellmann-Feynman
forces on each structure in Table I, we displaced each
symmetry-independent ion in each Cartesian direction in
turn by ±0.01 Å and recalculated the forces. From finite
differences, we determined the force constants matrices.
We diagonalized the corresponding dynamical matrices
to obtain the normal mode frequencies and eigenvectors.

The infrared phonon frequencies and symmetry labels
for CT are shown in Table IV and those for CAN in Ta-
ble V. We also computed the zone-center normal mode
frequencies and symmetry properties for CAN in the
undistorted[31] Fm3m double perovskite structure at the
experimental volume (a = 2 × 3.815 Å) (Table VI). As
was the case for CT[13], the most unstable mode found
is that of out-of-phase oxygen octahedral tilting (in CT,
this is a mode with q = (1/2, 1/2, 1/2); because of the
ordering in CAN, this mode is now at the zone center).
All other things being equal, we thus expect similar fer-
roelastic phase transitions in the two materials, with the
transitions shifted to lower temperatures in CAN. There
is also one unstable polar triplet in each case, though
ν is shifted to higher (less unstable) frequency in CAN
compared to CT. In both cases, octahedral tilting acts to
suppress this ferroelectric instability which would other-
wise be present.

For completeness, we report the 24 Raman active
mode frequencies for CAN in Table VII. By comparing
the eigenvectors of the Raman-active modes in distorted
CAN with those of the 9 Raman-active modes of undis-
torted CAN (symmetries A1g, Eg, and F2g), we find that
9 modes of CAN can be associated with those of the
undistorted case. To the extent that the deviation from
cubic symmetry is small, we expect these peaks to have
high intensity and the others to be weaker. The predicted
Raman peak at 797 cm−1 is due to symmetric breathing,

TABLE IV: First-principles phonon symmetry labels, fre-
quencies ν (in cm−1), effective charges Z

?
(in |e|), quartic

potential term B (in 1018 J/m4), harmonic contributions
to dielectric permittivity κha, contributions to dielectric
permittivity in decoupled anharmonic quantum oscilla-
tor model κqu at zero temperature and room temperature
(RT) = 25◦C, and contribution to τf at RT (in 10−6 K−1)
for polar modes in CaTiO3. Electronic contribution to,
and total dielectric constant are shown, assuming κ∞ to
be temperature- independent.

label ν Z
?

B κha κqu κqu τf
(0 K) (RT) (RT)

B1u 87 2.84 16.15 78.64 49.23 33.42 +129
112 1.31 6.27 10.03 8.82 7.32 +16
171 1.19 2.35 3.53 3.47 3.40 +1
251 0.39 3.71 0.18 0.18 0.17 0
423 0.74 1.09 0.22 0.22 0.22 0
468 0.04 11.18 0.00 0.00 0.00 0
508 1.36 11.26 0.52 0.52 0.52 0

B2u 103 3.10 13.94 65.77 49.46 37.18 +117
161 1.29 1.12 4.66 4.62 4.55 +1
217 0.38 0.97 0.23 0.23 0.23 0
250 0.55 1.27 0.36 0.36 0.36 0
294 0.75 0.86 0.48 0.48 0.47 0
332 0.18 4.19 0.02 0.02 0.02 0
480 0.47 1.01 0.07 0.07 0.07 0
505 1.20 3.93 0.42 0.42 0.42 0
546 0.12 -0.22 0.00 0.00 0.00 0

B3u 85 3.15 15.70 99.48 62.59 42.47 +163
160 0.94 0.61 2.52 2.51 2.49 0
199 0.50 1.13 0.46 0.46 0.45 0
271 0.01 3.09 0.00 0.00 0.00 0
311 0.64 1.66 0.31 0.31 0.31 0
362 0.29 1.15 0.05 0.05 0.05 0
424 0.80 3.53 0.26 0.26 0.26 0
483 0.04 -0.28 0.00 0.00 0.00 0
525 1.24 7.44 0.41 0.41 0.41 0

κ∞ 6.08 6.08 6.08
(κ)total 274.70 190.75 140.87
(τf )total +428

the split doublet at 553-554 cm−1 is due to asymmet-
ric breathing, and the split triplets at 446-457 cm−1 and
188-242 cm−1 are due to Ca motion and O motion trans-
verse to Al-O-Nb bonds. For the 188-242 cm−1 modes,
the amplitude of Ca motion is largest, for the 446-457
cm−1 modes, the amplitude of the O motion is largest.

The magnitudes of the mode effective charges, as de-
fined in Eq. (II.3), are given for each infrared active (po-
lar) mode in Tables IV-V and Figure 2. The harmonic
contribution of each infrared active mode to the static
dielectric constant is given in Tables IV-V and Figure 3,
using Eq. (II.2) with ωµ = 2πcνµ, where νµ are in cm−1

and c is the speed of light. The total static dielectric ten-
sor in the harmonic approximation, obtained by summing
up the mode contributions and the electronic dielectric
tensor, is given in Tables IV-V.
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FIG. 2: Mode effective charges of polar modes in CT and
CAN
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FIG. 3: Mode-by-mode contributions to total dielectric
constant of CT and CAN within harmonic approxima-
tion.

TABLE V: Same as Table IV, for CAN.
label ν Z

?
B κha κqu κqu τf

(0 K) (RT) (RT)
Au 116 0.07 0.26 0.02 0.02 0.02 0

148 0.20 0.20 0.13 0.13 0.13 0
186 0.59 1.21 0.75 0.75 0.74 +1
203 0.28 0.43 0.14 0.14 0.14 0
214 1.06 1.60 1.83 1.82 1.81 +1
270 0.39 1.32 0.15 0.15 0.15 0
275 0.06 1.24 0.00 0.00 0.00 0
289 1.57 1.34 1.22 1.22 1.22 0
316 0.70 3.04 0.36 0.36 0.36 0
332 0.95 4.00 0.60 0.60 0.60 0
347 0.88 3.64 0.47 0.47 0.47 0
427 0.96 8.48 0.37 0.37 0.37 0
475 0.01 2.47 0.00 0.00 0.00 0
503 0.07 25.86 0.00 0.00 0.00 0
604 1.32 18.82 0.35 0.35 0.35 0
622 0.23 15.45 0.01 0.01 0.01 0
635 0.17 18.31 0.01 0.01 0.01 0

Bu 128 0.22 0.24 0.22 0.22 0.21 0
161 1.04 1.70 3.10 3.05 2.99 +6
194 0.90 0.78 1.60 1.60 1.59 +1
206 0.88 0.90 1.36 1.35 1.35 +1
276 1.06 2.80 1.09 1.08 1.08 0
292 1.50 0.81 1.95 1.95 1.95 0
304 1.57 2.83 1.97 1.96 1.96 +1
324 0.34 1.68 0.08 0.08 0.08 0
328 1.17 3.38 0.93 0.93 0.92 0
381 0.55 2.31 0.16 0.16 0.16 0
427 1.04 7.60 0.44 0.44 0.44 0
429 0.96 3.35 0.37 0.37 0.37 0
472 0.31 5.21 0.03 0.03 0.03 0
601 0.46 17.66 0.04 0.04 0.04 0
615 1.29 29.31 0.32 0.32 0.32 0
627 1.31 19.76 0.32 0.32 0.32 0

κ∞ 4.93 4.93 4.93
(κ)total 25.34 25.24 25.13
(τf )total +11

In Figures 2-3, pseudotriplet averages are shown. An
undistorted simple perovskite has three infrared-active
triplets; while an Fm3m ordered double perovskite has
four infrared-active triplets. In the case of CT and CAN,
the low-temperature phases are distorted from cubic sym-
metry due to octahedral tilting. If the distortion of the
structure from cubic symmetry is small, the cubic triplets
will evolve to pseudotriplets, while new, low Z? infrared
active modes will appear. If the distortion from cu-
bic symmetry is large, one can nonetheless still define
“pseudotriplets” by the following method: Let nu be the
number of zone-center polar triplets for the cubic phase
(nu = 3 for CT and 4 for CAN). Let {eλα} be the eigen-
vectors for the the polar zone-center triplets of the ideal
perovskite structure with polarization in Cartesian direc-
tion α, and {eµ} the eigenvectors of the polar modes of
the distorted structure, µ arranged in order of increasing
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TABLE VI: Frequencies (in cm−1) for optical zone-center
modes for ordered CAN in the undistorted Fm3m double
perovskite structure with a = 2 × 3.815 Å. Phonons are
grouped by irreducible representation. F1u frequencies
are for transverse optical modes. Imaginary frequencies
indicate harmomic instabilities.

Label ν Label ν Label ν
A1g 911 F1u 48 i F2g 102
Eg 660 F1u 304 F2g 445
F1g 208 i F1u 487 F2u 204

F1u 733

TABLE VII: Computed frequencies of Raman-active
modes in CAN (in cm−1). Starred frequencies are those
for modes whose eigenvectors most closely correspond to
those of the nine Raman-active modes for an undistorted
ordered CAN perovskite.

Label ν
Ag 136 162 188∗ 242∗ 289 331

339 452∗ 457∗ 553∗ 564 797∗

Bg 175 182 185 211∗ 237 351
359 446∗ 482 554∗ 732 770

νµ.
Each mode µ of the distorted structure gets a weight

Cµα for each direction α according to the total squared
projection of its eigenvector onto the α eigenvectors of
the undistorted structure: Cµα =

∑nu
λ=1(eµ · eλα)2. The

cumulative weight of all modes up to mode µ is Dµα =∑µ
i=1 Ciα. Each mode µ is then partitioned among one or

more component α of one or more pseudotriplets j with
weight wjµα according to the following “bottom-up” fill-
ing. If [Dµα] = [D(µ−1)α], then w([Dµα]+1)µα = Cµα.
Otherwise, w([Dµα]+1)µα = Dµα − [Dµα] and w[Dµα]µα =
[Dµα]−D(µ−1)α. The overall weight of mode µ in pseu-
dotriplet j is given by wjµ = (

∑
α wjµα)/3.

The frequencies associated with the pseudotriplets are
given as follows:

1
ν2
j

=
∑
µ

wjµ
ν2
µ

. (IV.1)

The total dielectric contribution of a pseudotriplet is

κj =
∑

µ;wjµα>0

(wjµα/Cµα)κµ, (IV.2)

and the mode effective charges for the pseudotriplets are
given by

Z
?

j =
√
V ε0m0ω2

jκj . (IV.3)

The pseudotriplet averages are given in Tables VIII- IX
As can be seen by the figures, the lowest and highest

pseudotriplets of CT are clearly associated with triplets
in the distorted structure, as well as the two highest pseu-
dotriplets of CAN. For the other triplets, significant mode
mixing has taken place.

TABLE VIII: Phonon pseudotriplet properties for CT. ν
in cm−1; Z

?
in |e|, B in 1018J/m4.
ν Z

?
B κ %κtot

98 3.36 12.38 259.99 94.6
217 1.24 1.89 7.18 2.6
509 1.30 7.14 1.44 0.5

(κ∞) 6.08 2.2

TABLE IX: Same as Table VIII, for CAN.
ν Z

?
B κ %κtot

194 1.31 1.22 10.05 39.6
302 1.78 2.16 7.63 30.1
425 1.17 6.30 1.68 6.6
613 1.35 22.19 1.06 4.2

(κ∞) 4.93 19.4

V. ANHARMONICITY AND TEMPERATURE
COEFFICIENT

In Section I, we outlined a method whereby τf could
be determined in principle by solving the coupled anhar-
monic quantum oscillator problem for the system. Prac-
tical solution of this problem is difficult because the nor-
mal mode basis for the system is uncountably large: for a
system with N atoms per unit cell, there are 3N normal
modes for each wavevector q in the Brillouin zone. To
obtain sufficient anharmonic lattice parameters from first
principles to be able to solve this problem for materials as
complex as CT or CAN, would be very computationally
expensive. Instead, we make a series of approximations
in order to obtain a model for which we can compute all
of the anharmonic terms and then solve numerically.

(1) The unit cell is kept the same at all temperatures.
This allows the normal mode coordinates and expansion
of total energy in normal mode coordinates to be calcu-
lated once and then used at all temperatures. This ap-
proximation is not valid near a ferroelastic where the cou-
pling between strain and lattice dynamics is too impor-
tant to ignore. In CT and, presumably CAN, ferroelastic
phase transitions involving oxygen octahedra rotation do
take place[32, 33]; however, the transition temperatures
are far above room temperature. (2) We include only
the zone-center infrared-active normal mode degrees of
freedom in our model. (3) We ignore coupling between
the different degrees of freedom. (4) We truncate the
potential for each degree of freedom to fourth order.

Since the different degrees of freedom in the model are
decoupled, the ionic susceptibility becomes a sum over
modes of the susceptibility due to each mode:

καβ = (κ∞)αβ +
1
ε0

∑
µ

∂ < (Pµ)α >
∂Eβ

, (V.1)

where< Pµ > is the expectation value of the polarization
of mode µ at temperature T. We have < Pµ >= Z

?

µ <
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ξµ > /V , where < ξµ > is the expectation value of the
mode amplitude ξµ. Furthermore, ∂ < ξµ > /∂Eβ =
Z
?

µβ∂ < ξµ > /∂Ê, where Ê is a perturbation normalized
so that when its value is 1, it introduces 1 J/m change
in the potential. Thus

καβ = (κ∞)αβ +
∑
µ

Z
?

µαZ
?

µβ

V ε0

∂ < ξµ >

∂Ê
. (V.2)

For an ideal ceramic,

κ = (κ∞) +
∑
µ

1
3
Z
?2

µ

V ε0

∂ < ξµ >

∂Ê
. (V.3)

For each oscillator, the problem is that of a particle
of mass m0 in an anharmonic well. For the case of the
zone-center polar modes in CT and CAN, all odd-order
terms in the total energy disappear, and our expression
for the total potential becomes

V = V0 +
∑
µ

(Aµξ2
µ +Bµξ

4
µ). (V.4)

Aµ are already known from the calculation of normal
mode frequencies:

Aµ =
1
2
m0ω

2
µ. (V.5)

Note that in the harmonic case, ∂ < ξµ > /∂Ê =
1/(m0ω

2
µ) and Eqs. V.2-V.3 revert to Eqs. II.2 and II.5.

The anharmonic terms cause the permittivity to devi-
ate from its value in the harmonic approximation. We de-
termined Bµ by a series of first-principles frozen-phonon
total energy calculations in which the each phonon, in
turn, was frozen in with amplitudes 0.4n Å; n = 1 to
4. A least-squares fit was then used to obtain Bµ. The
results are shown in Tables IV-V and Figure 4. The
pseudotriplet averages are given by Bj =

∑
µ wjµBµ. In

general, the fourth-order anharmonic terms are positive
and they increase as the frequency increases. The lowest-
frequency modes in CT are a noteworthy exception to
this trend.

To solve for ∂ξµ/∂Ê numerically, we used as a basis
set the eigenstates of the corresponding unperturbed har-
monic oscillator. The perturbations Bµξ4

µ and Êξµ were
written in terms of creation and annihilation operators.
The eigenenergies and eigenvectors were then determined
by matrix diagonalization. < ξµ > were then found by
writing ξµ in terms of creation and annihilation opera-
tors and using elementary matrix operations. By taking
the limit Ê → 0, we computed ∂ξµ/∂Ê as a function of
temperature for T = 0, 5, 10, . . . 350 K, and from Eq. V.3,
we obtained κ(T ). Our results are shown in Figures 5-6.
In Tables IV-V, we give the contribution of each mode
to κ at zero temperature and at room temperature. The
total τf at room temperature and the partial contribu-
tions of each mode to τf are also given, where Eq. (I.1)
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FIG. 4: Fourth order anharmonic coefficients for polar
modes in CT and CAN

is used to related τκ to τf . For consistency, we set α = 0.
Experimentally, α is 11 ×10−6 K−1 for CT[34]; assum-
ing a similar value for α in CAN, τf is dominated by the
−τκ/2 contribution in both cases.

VI. DISCUSSION

In the harmonic approximation, we find κ = 276.0 for
CT and κ = 25.3 for CAN. The CT values compares
well with the experimental room temperature values of
170 and the CAN value is in very good agreement with
the room temperature value of 27. The harmonic ap-
proximation should hold best at low temperatures. Ex-
perimentally, κ ≈ 330[9] for CT at T = 0. Extrapo-
lating the room-temperature results for CAN to T = 0
using the experimental τε value at room temperature,
the low temperature permittivity of CAN is about 23.
The agreement with the zero temperature experimental
results is very good. The computed individual compo-
nents of the permittivity tensor for CAN are κxx = 24.08,
κyy = 24.32, κzz = 27.63, and κxz = 0.19 + (κ∞)xz. As-
suming that (κ∞)xz is small, the principal axes of the
dielectric tensor are close to the Cartesian axes. The
predicted anisotropy in the single crystal dielectric prop-
erties of CAN is less than that for CT[13].

In each case, polar pseudotriplet analysis shows that
the lowest pseudotriplet contributes the most to the per-
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FIG. 5: Temperate dependence of permittivity in CT in
independent anharmonic oscillator model.
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FIG. 6: Temperature dependence of permittivity in CAN
in independent anharmonic oscillator model.

mittivity (see Tables VIII-IX). In CT, this pseudotriplet
dominates the permittivity, contributing nearly 95% of
the total, while in CAN, the lowest frequency pseu-
dotriplet only contributes about 40 % of the permittivity.
In CAN, the contributions of second pseudotriplet and
the electronic permittivity are relatively important.

In each case, κ ≈ 15 +κpt1, where κpt1 is the contribu-
tion of the lowest frequency pseudotriplet. The decrease
in κpt1 between CT and CAN is due to several factors.
In the following thought experiment, we see how each of
the factors affects κpt1. First, we decrease the individual
ionic effective charges from their values in CT to their
values in CAN. κpt1 decreases from 260 to 157 due to
the lower ionic Born effective charges in CAN. Next, we
raise the pseudotriplet frequency from its value in CT to
its value in CAN. κpt1 decreases further to 40. Finally,
we change the eigenvectors of the low-frequency modes
to those of CAN. κpt1 drops to its value of 10 in CAN.

The change in pseudotriplet frequency and change in

CT:    = 104 cm-1 CAN:    = 214 cm-1

Ca Ti Al Nb O

FIG. 7: Comparison of eigenvectors of representative low
frequency modes in CT and CAN. A cross section is pro-
jected onto the xy plane. Cross sections of BO6 octahe-
dra are shaded in gray

pseudotriplet eigenvectors are the most significant factors
in explaining the different permittivities of CT an CAN
and are equally important. How does the difference in
the eigenvectors lead to a lower effective charge in CAN?
In Figure 7, we show the eigenvectors of comparable rep-
resentative low-frequency polar phonons in the two cases,
both with frequencies and effective charges close to the
corresponding pseudotriplet average, and both with net
polarization in the ŷ direction. In CT, all cations move
in the same direction as the anions, leading to a large Z

?

via Eq. (II.3). In CAN, the Ca and the O again move in
opposite directions, but now the Al and Nb move in the
same direction as the O. Postive and negative charges
moving in the same direction lowers Z

?
and reduces per-

mittivity.
In Table IV, we see that anharmonic terms lead to sig-

nificant changes in permittivity of CT relative to its value
in the harmonic approximation, even at zero temperature
(due to quantum zero point motion). Furthermore, they
lead to significant temperature dependence of κ. The
qualitative variation of κ in CT with temperature shows
excellent agreement with experiment, decreasing mono-
tonically, and having an inflection point at T ≈ 100 K In
CAN, similar effects are predicted, but with much smaller
magnitude. The predicted room temperature permittiv-
ities for this model are 180 for CT and 25 for CAN, in
very good agreement with experiment.

Our model gives τf = +428 ×10−6 K−1 in CT and
τf = +11 ×10−6 K−1 in CAN. Since the system is mod-
elled as decoupled oscillators, we see the contribution
of individual modes to τf . In both CT and CAN, the
lowest frequency polar modes dominate τf . The agree-
ment with the experimental values of +900 ×10−6 K−1

and −88 ×10−6 K−1, respectively, is only fair. This is
due both to LDA errors and to the approximations used
in the models. The model fails to incorporate coupling
between different modes and the coupling of the lattice
dynamics to strain (i.e. thermal expansion). In par-
ticular, the coupling of the low frequency optical modes
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FIG. 8: τf (in 10−6 K1) for a system with a single polar
triplet of frequency ν and quartic anharmonic coefficient
B, assuming no thermal expansion and no coupling of
the triplet to other modes or strain.

to the acoustic branch has been found to be important
in the temperature-dependent lattice dynamics of per-
ovskite oxides such as KNbO3[35], and should therefore
have an important quantitative effect on κ(T ).

Nonetheless, the simple model presented here repro-
duces qualitatively the difference between the τf of CT
and CAN and thus shows that the model captures a sig-
nificant piece of physics: namely, anharmonicity within
low-frequency polar phonons with a positive fourth order
coefficient tends to lead to a positive τf . In the context
of a decoupled oscillator model, we can see the relative
effect of frequency and anharmonicity of a mode on τf .
We assume that κ >> κ∞ and that the system is cu-
bic and has one triply degenerate set of polar modes.
The computed τf for this case is shown in Figure 8. For
comparison, the lowest pseudotriplet properties for CT
and CAN are shown. It can be seen that both the lower
frequency and the higher positive anharmonicity of the
low-frequency polar phonons in CT lead to its much more
positive τf .

Why is the anharmonicity of the low-frequency polar
modes in CT so high? It is a consequence of the eigenvec-
tors of the low-frequency phonons. In CT, the Ti inside
the BO6 octahedron move against the oxygens. At rela-
tively low amplitude, the short-range repulsion between
Ti and O becomes significant, leading to an increase in
the potential and thus a large positive B. In CAN, on the
other hand, both Al and Nb move roughly in tandem with
the surrounding O octahedra. The low-frequency modes
can thus go to significantly larger amplitude before the
effects of short range repulsion becomes significant and
thus B is lower. We thus conclude that the same factors
(lower frequency and type of eigenvector) that give CT a
much higher permittivity than CAN give it a τf that is
more positive and larger in magnitude.

We see from Figure 8 that to simultaneously obtain
very high permittivity (which requires low-ν modes) and

τf near zero would require either exceptionally low anhar-
monicity or else for couplings not included in the model
to counteract the tendency[36, 37] of high-κ materials to
have large positive τf .

The difference in eigenvector between CT and CAN is
significant. Why do B site cations move against the O
octahedra in CT and not in CAN? We first note that
in the case of simple perovskites involving Nb, such as
KNbO3 (KN), Nb moves against the oxygens in the low-
est frequency polar modes[27, 38]. This difference in the
behavior of Nb in KN and CAN is not due to size effects:
the Nb-O distances in the two compounds are almost
identical. We look instead at the difference in electronic
structure.

It is well known that hybridization of oxygen 2p elec-
trons with B site transition metal d electrons is important
for ferroelectricity and incipient ferroelectricity[39, 40].
In the case of SrTiO3 vs. SrHfO3, Stachiotti et al.[41]
showed a difference between the eigenvectors of the low-
est frequency polar modes very analogous to the differ-
ences between CT and CAN: in SrTiO3, the Ti tends to
move against the oxygens; in SrHfO3, the Hf tends to
move with the oxygens. They conclude that Ti 3d- O 2p
covalency in SrTiO3 is more important than Hf 5d- O 2p
covalency in SrHfO3.

One expects an inverse relationship between the impor-
tance of covalent bonding in a perovskite and the band
gap, all other factors being the same. Indeed, the band
gap in SrHfO3 is larger than in SrTiO3[42]. With this
in mind, we calculated the band gaps in CT, CAN, and
KN. Although density functional theory does not cor-
rectly give the magnitudes of band gaps[43], we expect
the relative differences to hold. Our results are shown in
Table X.

TABLE X: LDA band gaps and nature of lowest conduc-
tion state in CT, CAN, and KN.

Compound Band gap Dominant atomic contribution to
lowest conduction state

CaTiO3 1.91 eV Ti 3d
CaAl1/2Nb1/2O3 2.76 eV Nb 4d

KNbO3 1.39 eV Nb 4d

Our results support the hypothesis that larger band
gaps lead to lesser importance of covalent bonding and
less tendency of B site cations to move against the oxy-
gens in the low-frequency phonons. The reason for the
larger gap in CAN than KN is due to the presence of
the Al. The Al ions contribute no low-lying energy levels
to the conduction bands. The lowest-lying conduction
states come mainly from Nb-4d electrons. In a simple
perovskite with Nb on every B site, the lowest conduction
state wavefunction is spread over all the B sites and is
more plane-wave-like than in a complex perovskite where
Nb and thus the wavefunction is distributed on only half
the sites. The more localized wavefunctions in the com-
plex perovskite lead to higher eigenenergies and thus a
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larger band gap. It would be interesting to see how the
type and ordering of the B site cations affects the elec-
tronic structure, phonon behavior, and dielectric proper-
ties of complex perovskites in general.

VII. CONCLUSIONS

We have used first-principles computations and
compare the dielectric properties of CaTiO3 and
CaAl1/2Nb1/2O3. The difference in relative permittiv-
ity is largely due to differences in the low-frequency po-
lar phonons in the two systems. In CAN, these phonons
have higher frequency and qualitatively different phonon
eigenvectors than in CT, therefore suppressing the per-
mittivity. We introduce and solve a model for the tem-
perature dependence of dielectric constant and thus τf .
The differences in τf for the two systems are again cor-
related with the differences in the properties of the low
frequency phonons. Our results demonstrate that the
details of B-site cation chemistry in complex perovskites
has an effect on the lattice dynamics and dielectric prop-
erties not wholly accounted for by size effects.
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